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Abstract. Many of the processes that govern the viability of animal populations vary spatially, yet
population viability analyses (PVAs) that account explicitly for spatial variation are rare. We develop a
PVA model that incorporates autocorrelation into the analysis of local demographic information to
produce spatially explicit estimates of demography and viability at relatively fine spatial scales across a
large spatial extent. We use a hierarchical, spatial, autoregressive model for capture–recapture data
from multiple locations to obtain spatially explicit estimates of adult survival (/ad), juvenile survival
(/juv), and juvenile-to-adult transition rates (w), and a spatial autoregressive model for recruitment
data from multiple locations to obtain spatially explicit estimates of recruitment (R). We combine local
estimates of demographic rates in stage-structured population models to estimate the rate of popula-
tion change (k), then use estimates of k (and its uncertainty) to forecast changes in local abundance
and produce spatially explicit estimates of viability (probability of extirpation, Pex). We apply the
model to demographic data for the Sonoran desert tortoise (Gopherus morafkai) collected across its
geographic range in Arizona. There was modest spatial variation in k̂ (0.94–1.03), which reflected spa-
tial variation in /̂ad (0.85–0.95), /̂juv (0.70–0.89), and ŵ (0.07–0.13). Recruitment data were too sparse
for spatially explicit estimates; therefore, we used a range-wide estimate (R̂ = 0.32 1-yr-old females per
female per year). Spatial patterns in demographic rates were complex, but /̂ad, /̂juv, and k̂ tended to
be lower and ŵ higher in the northwestern portion of the range. Spatial patterns in Pex varied with
local abundance. For local abundances >500, Pex was near zero (<0.05) across most of the range after
100 yr; as abundances decreased, however, Pex approached one in the northwestern portion of the
range and remained low elsewhere. When local abundances were <50, western and southern popula-
tions were vulnerable (Pex > 0.25). This approach to PVA offers the potential to reveal spatial patterns
in demography and viability that can inform conservation and management at multiple spatial scales,
provide insight into scale-related investigations in population ecology, and improve basic ecological
knowledge of landscape-level phenomena.
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INTRODUCTION

Population viability analysis (PVA) is a broad collection
of strategies to forecast the status of a population or a col-
lection of populations (Beissinger and McCullough 2002).
Typically, PVAs integrate information on demographic pro-
cesses and their variability into stochastic simulation models
that are used to project population trends and estimate the
risk of extinction or some other measure of viability (Morris
and Doak 2002, Ralls et al. 2002, Reed et al. 2002). PVAs
are used commonly to understand the population biology of
rare and threatened species and to provide information to
develop strategies to minimize extinction risk (Beissinger
and Westphal 1998, Menges 2000, Ralls et al. 2002). Within
this context, PVAs have been used to explore the contribu-
tion of different demographic rates to population viability,
to assess the impacts of human activities, to contrast man-
agement alternatives, to establish recovery criteria, and to
guide research (Schemske et al. 1994, Carroll et al. 1996,
Akc�akaya and Sj€ogren-Gulve 2000).

PVA is a relatively well-established tool for assessing
extinction risks at local scales (e.g., a single population)
where the demographic processes that govern viability—sur-
vival, individual growth (i.e., transitions between life stages),
and reproduction—are unlikely to vary markedly across the
area of interest (Beissinger and Westphal 1998, Morris and
Doak 2002). At larger spatial scales (e.g., multiple popula-
tions or a species range), however, its utility and reliability
depend on the ability to account for spatial variation in
demographic processes that is common across larger scales
(Ozgul et al. 2006, Hern�andez-Mat�ıas et al. 2013, Zeigler
et al. 2013, Zylstra et al. 2013). Generally, PVAs have con-
fronted spatial variation at large scales in three different
ways, each of which has limitations. A common approach is
simply to disregard spatial variation in demography by
applying estimates obtained from a single population to the
entire area of interest (see review by Zeigler et al. [2013]).
This strategy, however, has the potential to produce biased
viability estimates if the population is not representative of
other populations in the target area. It can also overestimate
viability because including variation tends to decrease viabil-
ity (Morris and Doak 2002). A second approach is to
account implicitly for spatial variation in demography by
combining data from multiple populations into a single esti-
mate of each demographic rate (e.g., Doak et al. 1994,
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McGowan et al. 2017). Although resulting viability esti-
mates may be reasonable across all populations, important
site-specific differences in viability that can affect population
dynamics locally and regionally are likely to be overlooked
(e.g., source–sink dynamics; Pulliam 1988). Further, pooling
data across populations ignores information about the rela-
tive location of populations, which is fundamental to char-
acterizing spatial patterns and understanding the processes
that govern these patterns. A third approach is to account
explicitly for spatial variation in demography by characteriz-
ing rates of multiple populations and incorporating loca-
tions and other spatial information about these populations
(Dunning et al. 1995, Turner et al. 1995, Reed et al. 2002,
Beissinger et al. 2006). This approach, typically referred to
as spatially explicit PVA, has the potential to provide the
most reliable estimates of viability, although its data require-
ments are high, which can limit its application. For example,
many early spatially explicit PVAs were a hybrid of the three
approaches outlined above; they considered the effects of
population spatial structure (e.g., location, size, and habitat
features) on viability but relied on only one set of demo-
graphic rates for all locations (LaHaye et al. 1994, Lamber-
son et al. 1994, Akc�akaya and Atwood 1997, McCarthy
et al. 2000) or a few different sets that varied with environ-
mental features (Pulliam et al. 1992) or patch sizes (Hokit
and Branch 2003). More recently, some PVAs have incorpo-
rated spatial variation in demographic rates explicitly by
estimating rates for a few discrete populations (e.g., Hern�an-
dez-Mat�ıas et al. 2013, Bevacqua et al. 2015). Nevertheless,
when a large number of populations are of interest or a spe-
cies’ distribution is relatively large and continuous, obtain-
ing estimates from enough populations to reveal spatial
patterns in demography at useful resolutions can be chal-
lenging. As such, these types of demographic data are
uncommon, especially for long-lived species.
Using spatial models to estimate demographic rates

presents a potential solution to many of the limitations of
current approaches that account for spatial variation in
PVAs. Spatial models include information about the loca-
tion of each object of interest (e.g., individual, habitat patch,
or population) as well as the relationships to objects in
adjoining locations to inform parameter estimates for each
location (Haining 1990, Cressie 1993). The ability to lever-
age data from surrounding locations not only can improve
precision of estimates for locations where data are limited
but it also allows parameters to be estimated for locations
with no data. Consequently, spatial models can produce spa-
tially explicit estimates across an entire area of interest,
which can reveal spatial patterns that provide novel and
important insights into population dynamics and other
landscape-level processes. These capabilities can be espe-
cially important for modeling demographic rates derived
from capture–recapture methods because studies employing
these methods are labor intensive, so data tend to be sparse
(McKelvey and Pearson 2001, Litt and Steidl 2010).
Despite the potential value of spatial models for demogra-

phy, they had received little attention for this purpose until
Saracco et al. (2010) developed a hierarchical, spatial
autoregressive population model to produce spatially expli-
cit estimates of demographic rates using capture–recapture
data from locations distributed across a species’ range.

Although they developed their model for survival and resi-
dency probabilities, their model provides a flexible frame-
work that allows the underlying population model to be
substituted with other population models that can yield spa-
tially explicit estimates of the full array of demographic rates
that are needed for PVA.
In this paper, we modify and extend the approach of Sar-

acco et al. (2010) to develop a PVA that provides spatially
explicit estimates of viability. Specifically, we describe an
analytical approach to produce spatially explicit estimates of
survival, transition, and recruitment rates at relatively fine
spatial scales across a large spatial extent. We combine local
estimates of these rates in stage-structured population mod-
els to estimate rates of population change throughout the
focal area. We then use estimates of the rate of population
change (and its uncertainty) to forecast local abundance and
estimate viability. We apply the model to demographic data
for the Sonoran desert tortoise (Gopherus morafkai), a spe-
cies thought to be declining in response to an array of
threats that includes habitat loss, invasive species, disease,
and climate change (Zylstra et al. 2013, Gray and Steidl
2015, USFWS 2015). We examine the resulting spatial pat-
terns in demographic rates, rates of population change, and
viability for desert tortoises across their range in Arizona to
illustrate the types of insights into the spatial structure and
population dynamics that the model can provide. Finally, we
discuss the implications of our findings for conservation,
management, and research at multiple spatial scales.

PVAMODEL

The PVA model combines a spatial hierarchical model for
estimating survival and transition rates, a spatial model for
estimating juvenile recruitment (hereafter, recruitment), a
stage-structured population model that integrates local
demographic rates into estimates of rate of population
change, and a simulation model that forecasts viability using
the estimated rate of population change and its uncertainty.
To implement the PVA model, we assume that the target
species has two distinct life stages (i.e., juveniles and adults),
that its populations are distributed continuously across a
focal area, that demographic data are available from multi-
ple locations throughout the focal area, that demographic
rates are constant over time and identical for all individuals
of the same life stage from the same location, and that indi-
viduals remain in the same general location throughout their
life. The model can be modified easily to accommodate
changes in one or more of these assumptions (e.g., increas-
ing the number of stage or age classes, allowing demo-
graphic rates to vary with time, or modeling discrete
populations). To apply the model, we employ Bayesian
methods to estimate survival, transition, and recruitment
and use the resulting posterior distributions to propagate
uncertainty into estimates of rates of population change and
viability.

Survival and juvenile-to-adult transitions

The model to estimate survival of juveniles and adults
and the rate at which juveniles transition to adults relies on
capture–recapture data. Data are assembled into an
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encounter history for each individual, which indicates for
each year of the study if the individual was observed as a
juvenile or adult, if it was not observed, or if a location was
not surveyed. We estimate survival and transition rates from
these encounter histories using a state-space, multi-state,
population model (Calvert et al. 2009, Converse et al. 2012,
K�ery and Schaub 2012). State-space models are hierarchical
models that decompose encounter histories into two pro-
cesses: the state process, which describes the ecological
events that govern an individual’s state (i.e., survival and
transition), and the observation process, which describes
factors that govern the ability to observe the state process
(i.e., detection probability). We develop the state-space
model for i = 1, . . ., N encounter histories, j = 1, . . ., M
locations, and t = 1, . . ., T years.
We describe the state process in terms of the true state of

individual i at location j at time t, zi;j;t. An individual can
exist in one of three states: alive as a juvenile, alive as an
adult, or dead. We model the state of an individual, zi;j;t, as
conditional on its state during the previous time period,
zi;j;t�1 and represent the state process as a categorical ran-
dom variable:

zi; j;tjzi; j;t�1 �Cat sj;zi; j;t�1

� �

where sj;zi; j;t�1 is a vector of state-transition probabilities for
individual i at location j at time t, given that the individual
was in state zi; j;t�1 at time t � 1. We describe state-transition
probabilities (sj;zi; j;t�1 ) as a function of juvenile survival
(/juv; j), adult survival (/ad; j), and the rate at which juveniles
transitioned to adults (wj):

zi; j;t
juvenile adult dead

juvenile
zi; j;t�1 adult

dead

/juv; j 1� wj

� �
/juv; jwj 1� /juv; j

0 /ad; j 1� /ad; j
0 0 1

0
@

1
A

For example, the state of an individual that was alive as a
juvenile at location j during the previous year is modeled as
a multinomial random variable with a probability of surviv-
ing and remaining in the juvenile state equal to
/juv; j 1� wj

� �
, a probability of surviving and transitioning

into the adult state equal to /juv; jwj, and a probability of not
surviving equal to 1� /juv; j. Because estimates are condi-
tional on time of first capture (t = fi), the state of individual
i at time fi (zi; j; fi ) is juvenile or adult with a probability of
one. Additionally, when a juvenile transitions to an adult
between time t � 1 and t, we assume that it survives the
time interval as a juvenile and then transitions to an adult as
opposed to transitioning immediately to an adult and then
surviving the interval as an adult.
We describe the observation process in terms of the

observed state of individual i at location j at time t, yi; j;t. An
individual can be observed as a juvenile, observed as an
adult, or not observed. We model the observed state (yi; j;t)
as conditional on the latent state (zi; j;t) and assume that cap-
tured adults are not classified incorrectly as juvenile and vice
versa. We represent the observation process as a categorical
random variable

yi; j;tjzi; j;t �Cat dzi; j;t
� �

where dzi; j;t is a vector of detection probabilities for individ-
ual i at location j at time t, given that the individual is in
state zi; j;t. We assume that detection probabilities depend
only on the state of the individual; thus, we specify detection
probabilities (dzi; j;t ) as

yi; j;t
juvenile adult not observed

juvenile
zi; j;t adult

dead

pjuv 0 1� pjuv
0 pad 1� pad
0 0 1

0
@

1
A

where pjuv and pad represent detection probabilities for juve-
niles and adults, respectively.
We describe variation in survival (/z; j) and transition

rates (wj) with logit-linear models. We assume that survival
of an individual depends on its latent state and location

logitð/z; jÞ ¼ lz þ uz; j (1)

and that probability of a juvenile transitioning to an adult
depends on location

logitðwjÞ ¼ aþ vj (2)

where lz is mean state-specific survival, a is mean transition
rate, and uz;j and vj are random effects with means of zero
and are assumed to be spatially autocorrelated.
We describe spatial dependence among elements of each

vector of random effects (i.e., uz = [uz,1,. . ., uz,M] and v = [v1,
. . ., vM]) with conditional autoregressive (CAR) models that
assume the expectation of a value at a location is conditional
on values at nearby locations (Ver Hoef et al. 2018). We use
the intrinsic version of the CAR model (Besag and Kooper-
berg 1995, Thomas et al. 2014) for uz;j and vj

uz; j juz;�j � Norm
1
nj

X
k2Nj

uk;
r2
/z

nj

0
@

1
A

and

vj jv�j � Norm
1
nj

X
k2Nj

vk;
r2
w

nj

0
@

1
A

where uz; j and vj are normally distributed with conditional
mean given by the average of values of nj neighbors within the
geographic neighborhood Nj of location j (i.e., nj = dim[Nj])
and conditional variance given by r2

/z
or r2

w, which are vari-
ance parameters for /z and w that serve as measures of spatial
variation for each parameter, divided by nj. CAR models are
suited ideally for discrete spatial units, so we discretize the
focal area into contiguous units by overlaying a regular grid.

Recruitment

The model to estimate recruitment relies on data appro-
priate for estimating the number of one-year-old females
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produced per adult female per year. Locations with recruit-
ment estimates need not be the same locations where cap-
ture–recapture data are available. We describe variation in
recruitment (Rj) with log-linear models for j = 1, . . ., M
locations. We assume that recruitment follows a log-normal
distribution and depends only on location

logðRjÞ ¼ qþ wj (3)

where q is mean recruitment on the log scale and wj is a ran-
dom effect with a mean of zero and is assumed to be spa-
tially autocorrelated.
We describe spatial dependence among elements of the

vector of random effects (i.e., w = [w1, . . ., wM]) with an
intrinsic version of the CAR model

wj jw�j � Norm
1
nj

X
k2Nj

wk;
r2
R

nj

0
@

1
A

where wj is normally distributed with conditional mean
given by the average of values of nj neighbors within the geo-
graphic neighborhood Nj of location j (i.e., nj = dim[Nj])
and conditional variance given by r2

R, which is the variance
parameter for R that serves as a measure of spatial variation
for the parameter, divided by nj. We implement the CAR
model for recruitment in the same manner as those for sur-
vival and transition rates.

Rate of population change

We combine posterior distributions of survival, transition
rates, and recruitment into a posterior distribution for the
annual rate of population change for each grid cell (kj).
Specifically, within cell j, we sample the posterior distribu-
tions of each demographic rate l = 1, . . ., L times under the
assumption that demographic parameters are uncorrelated.
For each iteration, l, we combine demographic rates into a
2 9 2 population projection matrix from which we estimate
kj;l as the dominant eigenvalue

/juv; j;l 1� wj;l

� �
Rl

/juv; j;lwj;l /ad; j;l

� �
) kj;l

The resulting L estimates of kj;l form the posterior distri-
bution for each grid cell.

Population viability

We compute population viability for each grid cell as the
probability that the population of a cell becomes locally
extinct or extirpated (Pex) within an arbitrary period that
encompasses multiple generations of the focal species. For
each grid cell, we create replicate populations with the same
initial abundance and with age structures proportional to
the stable-age distribution and allow populations to change
each year according to ks drawn randomly from the poste-
rior distribution for that grid cell. If a population falls below
an arbitrary quasi-extirpation threshold, we consider it
extirpated for the remainder of the projection. We estimate

Pex for each grid cell as the proportion of populations that
were extirpated.

EXAMPLE: SONORAN DESERT TORTOISES

We applied the PVA model to data for the Sonoran desert
tortoise, a long-lived (lifespan > 30 yr), slow-growing (15–
20 yr to reach sexual maturity) species with generation times
of about 25 yr (Germano et al. 2002). Sonoran desert tor-
toises inhabit arid environments throughout western and
southern Arizona in the United States and western Sonora
in Mexico (USFWS 2015, Edwards et al. 2016). Our study
focused on the portion of their geographic range in Arizona,
an area of approximately 10.4 million ha (61% of their total
range; USFWS 2015) that is delimited by the Colorado
River to the north and west, the limits of the Sonoran
Desert to the northeast, and the international boundary to
the south (Fig. 1).
We considered demographic data from 18 locations that

spanned much of this portion of their range (Fig. 1). Data
for estimating survival and transition rates were available for
16 locations (Appendix S1: Table S1; Averill-Murray et al.
2002, Zylstra et al. 2013), and data for estimating recruit-
ment were available for five locations, three of which were at
or near the locations used to estimate survival and transition
rates (Appendix S1: Table S2; Campbell et al. 2015). We
note that the two most northwestern locations occur in a
hybrid zone between Sonoran and Mojave (G. agassizii)
desert tortoises (McLuckie et al. 1999, Edwards et al. 2015).
Plots at each location ranged in size from 0.93 to 3.9 km2

and were at elevations between 450 and 1,200 m. Vegetation
on plots was predominantly lower Colorado River and Ari-
zona upland subdivisions of Sonoran desert scrub, but some
plots also included elements of Mojave desert scrub, juniper

FIG. 1. Approximate range of Sonoran desert tortoises in
Arizona, USA (shaded area) and sites where data were collected on
survival and transition between life stages and recruitment. The
range was divided into a grid of 215 0.25° 9 0.25° cells to
implement the spatial model.
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woodland, interior chaparral, or desert grassland (Brown
1994, Averill-Murray et al. 2002).

Survival and juvenile-to-adult transitions

There were 3–9 yr of capture–recapture data collected
intermittently at each location between 1987 and 2008
(Appendix S1: Table S1). In years when locations were sur-
veyed, observers searched plots up to five times between
August and September when tortoises were most active. For
each tortoise encountered, observers checked for previous
marks, recorded sex, and measured midline carapace length
(MCL), which was used to divide tortoises into juvenile
(<180 mm) and adult (≥180 mm) size classes. If a tortoise
was unmarked, observers filed a unique combination of
notches in its marginal scutes (Cagle 1939). We used cap-
ture–recapture data to create a multi-state encounter history
for each tortoise across 22 yr. Because of small sample sizes
on most plots, we did not differentiate between encounter
histories of males and females; therefore, we assumed that
survival and transition rates for males and females were
equal.
To implement the state-space, multi-state population

model, we divided the species’ range in Arizona into 215
contiguous units by overlaying a regular grid of cells sized
0.25° latitude 9 0.25° longitude (28 9 24 km; Fig. 1). We
chose this scale as a compromise between resolution of spa-
tial patterns that could be supported reasonably by available
demographic data and computational efficiency. Within this
grid, we defined the geographic neighborhood of a cell (Nj)
as adjacent cells in cardinal and ordinal directions (i.e., the
eight surrounding cells).
We estimated survival and transition rates using Bayesian

methods with OpenBUGS version 3.2.1 (Lunn et al. 2009).
We established uniform prior distributions (Unif[0,1]) for pz,
/z;j , and wj , intrinsic Gaussian CAR prior distributions
(Thomas et al. 2014) for spatial random effects (uz;j and vj),
and gamma prior distributions (Gamma[0.1, 0.1]) for condi-
tional precision parameters of the CAR models (s/z

and sw,
where s ¼ 1=r2). We obtained posterior distributions by
sampling full-conditional distributions using Markov chain
Monte Carlo methods (Gilks et al. 1996). Posterior distribu-
tions were based on 3,000 samples that were retained from
three independent Markov chains of 30,000 samples after
discarding the initial 27,000 samples and thinning the chain
by three. These sampling parameters were adequate to
obtain good model convergence based on inspecting chains
visually and on Gelman-Rubin statistics <1.1 (Gelman et al.
2004).

Recruitment

Recruitment data were too limited geographically to pro-
duce spatially explicit estimates (Fig. 1); therefore, we did
not use the recruitment model described above. Instead, we
applied a single estimate across the entire range (i.e., R
rather than Rj). Without spatial variation in recruitment,
spatial variation in viability reflected only spatial variation
in survival and transition processes. We described methods
for estimating range-wide recruitment of Sonoran desert tor-
toises elsewhere (Campbell et al. 2015); therefore, we

summarize only the methodological information that is rele-
vant for understanding how we integrated the recruitment
estimate into our analysis. We calculated recruitment, R, as
the product of four discrete components: proportion of
females in the population that reproduced, number of
female eggs produced per reproducing female per year, pro-
portion of eggs that hatched successfully, and proportion of
hatchlings that survived to the end of their first year. For the
first two components, proportion of females that reproduced
and number of female eggs produced, we used Bayesian gen-
eralized linear mixed models to obtain a posterior distribu-
tion of each component (proportion of females that
reproduced, mean = 0.52, 95% credible interval = 0.07–
0.94; number of female eggs produced, mean = 2.59, 95%
CI = 1.53–3.80). Data for the latter two components, hatch-
ing success and hatchling survival, were sparse or non-exis-
tent (Appendix S1: Table S2). We represented the posterior
distribution for each of these two components with a uni-
form distribution centered on ecologically plausible values
of 0.8 and 0.3 for hatching success and hatchling survival,
respectively, with bounds of the distributions established
arbitrarily at the values � 0.2. We then combined the poste-
rior distributions of all four components to obtain a poste-
rior distribution for recruitment with a mean of 0.32 females
per female per year (95% CI: 0.03–0.84).

Rate of population change and population viability

For each cell j, we sampled the posterior distributions of
each demographic rate 3,000 times and combined them into
3,000 estimates of kj;l, which formed the posterior distribu-
tion for the rate of population change for each grid cell. We
computed population viability (Pex) for each grid cell over a
period of 100 yr using a quasi-extirpation threshold of 10
and 1,000 replicate populations. All populations in all grid
cells started with the same abundance, which we varied
between 25 and 10,000 (i.e., densities of 0.04–15.5/km2).

RESULTS

Survival and transition rates

We based estimates of survival and transition rates on
capture–recapture data for 1,639 unique tortoises, 71%
(n = 1,165) of which were first encountered as adults and
29% (n = 474) as juveniles. Juveniles were more difficult to
detect (p̂juv = 0.42, 95% credible interval: 0.35–0.49) than
adults (p̂ad = 0.75, 0.72–0.78). For individuals first encoun-
tered as juveniles, 17% were encountered subsequently as
adults.
Across their geographic range in Arizona, annual survival of

adult tortoises (/̂ad) varied between 0.85 and 0.95, annual sur-
vival of juveniles (/̂juv) varied between 0.70 and 0.89, and the
annual rate at which juveniles transitioned to adults (ŵ) varied
between 0.07 and 0.13 (Fig. 2). Precision of estimates was rela-
tively high for survival of adults (CV = 4.6%) and juveniles
(12.6%) but was low for transition rate (52.7%; Table 1). Esti-
mates of spatial variation in rates of juvenile and adult survival
were similar (r̂/juv

= 1.08, 0.50–2.06; r̂/ad
= 1.07, 0.69–1.53),

both of which were higher than the estimate of spatial varia-
tion in transition rate (r̂w = 0.83, 0.21–2.32).
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Survival of adults was lower in the far northwestern por-
tion of Arizona and highest in the western- and eastern-cen-
tral portions (Fig. 2). Survival of juveniles increased slightly
from west to east, with areas of higher survival in the central
portion of the state. Transition rates tended to vary nega-
tively with adult survival and were higher in the northwest-
ern and eastern portions of the state (Fig. 2). As expected,
precision of all estimates was highest near sites where data

were available and lowest in areas that are far from those
sites (Appendix S2: Fig. S1).

Rate of population change

During the study period, rates of population change in
Sonoran desert tortoises were generally stable across their
range (mean k̂ = 0.99) when annual recruitment was

Adult survival Juvenile survival 

Juvenile-to-adult transi�on Rate of popula�on change

FIG. 2. Spatial patterns of mean adult and juvenile survival rates, juvenile-to-adult transition rates, and rates of population change of
Sonoran desert tortoises across Arizona at a scale of 0.25° 9 0.25° grid cells. Estimates of survival and transition rates are based on encoun-
ter histories of 1,639 tortoises from 16 sites surveyed between 1987 and 2008. Rates of population change were based on a recruitment esti-
mate of 0.32 females per female per year.
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assumed to be 0.32 females per female. The rate of popula-
tion change varied geographically between 0.94 and 1.03,
with about 4% of the range increasing (k̂ ≥ 1.01) and 44%
decreasing (k̂ ≤ 0.99). The rate of population change tended
to be higher in the central and eastern portions of Arizona
and lower in the extreme northwestern part of the state
(Fig. 2).

Population viability

As expected, Pex reflected initial abundance of local popu-
lations (Appendix S2: Fig. S2). Across all locations, average
Pex increased from 0% when initial abundance was 5,000 to
56% when initial abundance was 25. Spatial variation in Pex

also increased as initial abundance decreased (Appendix S2:
Fig. S2). When initial abundances were >500, Pex was near
zero (<0.05) across more than 85% of the entire range. When
initial abundances were ≤500, Pex varied between zero and
one across Arizona.
Spatial patterns in Pex suggested that populations in the

northwest portion of the species’ range were most vulnera-
ble (Fig. 3). As initial abundances decreased, Pex in this area
increased, whereas Pex remained low across the remainder of
the range. Nevertheless, when initial abundances decreased
below 50, Pex also increased in the western and southern
portions of the state (Fig. 3).

DISCUSSION

Spatial variation in demographic rates is common in ani-
mal populations (e.g., Ozgul et al. 2006, Ciannelli et al.

2007, Hern�andez-Mat�ıas et al. 2013, Zylstra et al. 2013)
and can have important consequences for population
dynamics and viability (Kareiva 1990, Watkinson and
Sutherland 1995, Morris and Doak 2002). PVAs that con-
sider spatial variation in underlying demographic rates
explicitly, however, are rare (Zeigler et al. 2013), largely
because the amount of data required to characterize demog-
raphy over large spatial scales is considerable and the analyt-
ical methods to accommodate explicit spatial relationships
in these data have been advanced only recently (Saracco
et al. 2010). In this paper, we sought to address this defi-
ciency by describing a spatially explicit PVA that leverages
recent developments in hierarchical modeling, spatial mod-
els, and Bayesian analyses to estimate demography and via-
bility at relatively fine spatial scales using data from
locations distributed sparsely throughout a large focal area.
Notably, our method differs from other spatially explicit
PVAs in the way we treat spatial variation in the underlying
demographic rates. Many spatial PVAs treat this type of
fine-scale variation as a source of uncertainty that needs to
be incorporated within a single estimate of viability at larger
spatial scales to improve its reliability. In contrast, we treat
spatial variation as an ecological feature of inherent interest,
principally because this information can provide novel
insights about spatial structure and dynamics of populations
for conservation, management, and research at multiple spa-
tial scales (e.g., grid cell, regional, species range).
At the smallest scale of our model (i.e., grid cell), esti-

mates of demography and viability can provide insight into
local population dynamics. For example, elasticity and sensi-
tivity analyses on the scale of an individual grid cell can

TABLE 1. Summary of means, standard deviations, and coefficients of variation of posterior distributions of juvenile survival (/juv), adult
survival (/ad), juvenile-to-adult transition rate (w), and rate of population change (k) from across the range of Sonoran desert tortoises in
Arizona (see Fig. 2 and Appendix S2: Fig. S1).

Parameters

Mean Standard deviation Coefficient of variation

Mean Range Mean Range Mean Range

/juv 0.77 0.70–0.89 0.10 0.02–0.16 12.6 2.0–22.7
/ad 0.91 0.85–0.95 0.04 0.01–0.09 4.6 0.7–10.2
w 0.09 0.07–0.13 0.05 0.01–0.10 52.7 16.6–87.1
k 0.99 0.94–1.03 0.06 0.03–0.09 6.0 3.3–9.2

N0 = 50 N0 = 500 N0 = 5000

FIG. 3. Spatial patterns of probabilities of extirpation for Sonoran desert tortoises across their range in Arizona based on a recruitment
estimate of 0.32 females per female per year and different initial population sizes (N0 = 50, 500, and 5,000).
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identify specific demographic rates that can serve as targets
for conservation efforts based on the magnitude of their
effects on the rate of population change (Benton and Grant
1999, Caswell 2001). Similarly, perturbation analyses can
inform how changes in threats or alternative management
actions are likely to affect viability. Estimates of viability
from individual grid cells also can be used to contrast areas
with high and low viability to identify local factors that
might explain these differences. Additionally, estimates at
small scales provide a foundation for understanding popula-
tion dynamics expressed at larger spatial scales. For exam-
ple, a population that is predicted to have low viability
based on its demographic rates can be stable or increasing if
immigration from neighboring areas is high (Pulliam 1988).
Consequently, managers would seek to protect adjacent
areas because loss of nearby source populations could con-
tribute to extirpation on a larger scale.
Spatially explicit estimates of demographic rates and viabil-

ity also can reveal broad-scale patterns of spatial variation,
which can illustrate the influence of regional-scale processes
on population dynamics, provide a basis for developing
research hypotheses about processes that give rise to these
patterns, and identify scales most appropriate for manage-
ment (Dunning et al. 1995, Rodenhouse et al. 1997). Across
much of the range of the Sonoran desert tortoise in Arizona,
for example, there was evidence of regional variation in sur-
vival and transition rates as well as small-scale variation
among adjacent grid cells (Fig. 2). These patterns suggest
that survival and transition rates are influenced, at least in
part, by biological and physical processes operating at local
to regional scales (Zylstra et al. 2013). There was also no
clear association between juvenile and adult survival across
much of their range, suggesting that demographic effects of
biological and physical processes vary across life stages. Col-
lectively, these patterns suggest that range-wide management
efforts aimed at increasing demographic rates may not be an
effective strategy for improving viability. Instead, local or
regional efforts focused on increasing particular demographic
rates might be a more reasonable strategy (e.g., increasing
adult and juvenile survival in the northwestern portion of
their range). Despite different spatial patterns among demo-
graphic rates, viability was relatively high across most of the
geographic range except the northwestern portion. In this
part of the range, lower survival of adult and juvenile tor-
toises resulted in lower viability (Figs. 2 and 3). We note,
however, that in the northwestern part of the range, Sonoran
desert tortoises likely hybridize with Mojave desert tortoises.
Consequently, low viability of tortoises may be an artifact of
using reproductive rates for Sonoran desert tortoises in an
area where rates of Mojave desert tortoises, which are higher,
may be more appropriate (Averill-Murray et al. 2014, Camp-
bell et al. 2015).
Our approach to PVA also can be used to estimate via-

bility at regional or range-wide scales. Specifically, infor-
mation about movements of individuals among grid cells
(i.e., dispersal rules) can be included to aggregate demo-
graphic information from grid cells into a single estimate
of viability (Dunning et al. 1995, Reed et al. 2002, Beis-
singer et al. 2006). Although this type of large-scale PVA is
used often for determining the conservation status of a spe-
cies (e.g., Doak et al. 1994, McGowan et al. 2017),

aggregating spatially explicit estimates for this goal is bene-
ficial only to the extent that incorporating spatial variation
improves the reliability of species-level estimates of viabil-
ity. The greater utility of spatially explicit estimates for spe-
cies conservation will likely come from understanding how
viability and dynamics of populations vary geographically
in relation to each other and to landscape features and
threats.
We focused on modeling local population viability by

accounting for spatial variation in demographic rates using
information from adjacent areas when arranged as a grid.
We acknowledge, however, that spatial variation in popula-
tion processes could be incorporated in other ways; there-
fore, we provide five examples of possible modifications.
First, environmental variables alone or in conjunction with
spatial effects (i.e., autocorrelation) can be included in the
models of demographic rates (sensu Guisan and Thuiller
2005). Although including environmental variables can pro-
vide insight into mechanisms that explain spatial patterns
and allow forecasting as conditions change, the resulting
models may describe patterns no better or even worse than
purely spatial models (Bahn and McGill 2007). Second, the
model could be extended to allow for correlations among
demographic parameters within years (e.g., Doak et al.
1994, Schaub et al. 2013). For the desert tortoise, we
assumed demographic parameters were independent. Viola-
tion of this assumption, however, could underestimate vari-
ance in the rate of population change, which would
overestimate population viability (Morris and Doak 2002).
Third, our estimates of viability for desert tortoises were
based on the same initial abundances for all grid cells.
Although this approach provides a relative rank of viability
among grid cells, it does not predict reliably what is likely
to occur within cells (Turner et al. 1995, Beissinger and
Westphal 1998, Ralls et al. 2002, Reed et al. 2002). Using
empirically based estimates of local abundance that vary on
the same spatial scale as demographic rates (0.25° 9 0.25°
in our example) would better reflect the actual extirpation
risk at a particular grid cell and would more accurately rep-
resent spatial variation in viability of the target species.
Fourth, we defined the neighborhood for autocorrelation
in the model for desert tortoises as adjacent cells in the car-
dinal and ordinal directions. Although this is a common
approach, neighborhoods could be established to capture
different spatial relationships. For example, if evidence sug-
gests that autocorrelation occurs across greater distances,
the neighborhood could be defined to include neighbors up
to two or more grid cells away and weights in the CAR
model can be assigned to cells according to their distance
from the focal cell. Finally, grid-cell sizes can be altered to
accommodate different scales or to examine the sensitivity
of population viability estimates to spatial resolution. In
our case study, estimates of demographic parameters and
rate of population change and their spatial patterns
remained largely consistent across three different cell sizes
(Appendix S3). There was, however, a slight increase in
variation of demographic rates as cell size increased, which
resulted in nominally higher extirpation probabilities
(Appendix S3).
As with all PVAs, the reliability and ultimate value of the

results from our model depend on the quality and amount
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of data (Beissinger and Westphal 1998). Even though spa-
tial models use data more efficiently, data requirements for
population-based studies of long-lived species at this scale
are still high because detailed demographic data are
required for multiple years at many locations. Conse-
quently, such data are only available infrequently, especially
for endangered species (Tear et al. 1995, Beissinger and
Westphal 1998, Morris et al. 2002, Zeigler et al. 2013). For
Sonoran desert tortoises, recruitment data were too limited
to produce spatially explicit estimates; therefore, we
explored the effects of varying range-wide recruitment esti-
mates on the magnitude and spatial patterns of viability
(Campbell et al. 2015; Appendix S4). The sensitivity of via-
bility to differences in recruitment underscores the value of
site-specific information. In contrast, data for estimating
survival and transition rates were considerably more
robust. Nevertheless, even these data were sparse in some
regions, which can lead to estimates for large geographic
regions that are informed by data from few locations.
Sparse data also result in propagation of autocorrelation
over large distances, which increases uncertainty in demo-
graphic rates far from locations with data (Appendix S2:
Fig. S1) and increases predicted risk of extirpation in these
areas (Morris and Doak 2002). Despite these limitations,
our results illustrate that viability can still be explored and
insights gained with sparse data, which will be the rule for
rare species with broad distributions. Fortunately, data col-
lected over large temporal and spatial scales are increasing
in availability for many species through continent-scale
monitoring projects (DeSante and Kaschube 2009), large-
scale citizen-science projects (Dickinson et al. 2012,
McKinley et al. 2015), and data sharing among researchers
(Crall et al. 2006, Duke 2006). As these types of data
become more common, we anticipate a growth in efforts to
relate spatial patterns in demography and viability to large-
scale phenomena with effects that are potentially complex
and spatially varying.
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